A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices

نویسندگان

  • Sreejit Chakravarty
  • Pradipta Kishore Dash
چکیده

This paper presents an integrated functional link interval type-2 fuzzy neural system (FLIT2FNS) for predicting the stock market indices. The hybrid model uses a TSK (Takagi–Sugano–Kang) type fuzzy rule base that employs type-2 fuzzy sets in the antecedent parts and the outputs from the Functional Link Artificial Neural Network (FLANN) in the consequent parts. Two other approaches, namely the integrated FLANN and type-1 fuzzy logic system and Local Linear Wavelet Neural Network (LLWNN) are also presented for a comparative study. Backpropagation and particle swarm optimization (PSO) learning algorithms have been used independently to optimize the parameters of all the forecasting models. To test the model performance, three well known stock market indices like the Standard’s & Poor’s 500 (S&P 500), Bombay stock exchange (BSE), and Dow Jones industrial average (DJIA) are used. The mean absolute percentage error (MAPE) and root mean square error (RMSE) are used to find out the performance of all the three models. Finally, it is observed that out of three methods, FLIT2FNS performs the best irrespective of the time horizons spanning from 1 day to 1 month. © 2011 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PSO based Integrated Functional Link Net and Interval Type-2 Fuzzy Logic System for Predicting Stock Market Indices

This chapter maps out the development of the PSO based Functional Link Interval Type-2 Fuzzy Neural System (FLIT2FNS) model used to forecast the stock market indices. In the process, it discusses the architecture of Functional Link Artificial Neural Network (FLANN), FLANN & Type-1Fuzzy Logic System (Type1FLS) and the differences between Type-1FLS and Interval Type-2 Fuzzy Logic System (IT2FLS)....

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

متن کامل

Applications of Data Mining in Stock Market

Data mining is being actively applied to stock market since 1980s. The various aspects of stock market to which data mining has been applied include predicting stock indices, predicting stock prices, portfolio management, portfolio risk management, trend detection, designing recommender systems etc. The various algorithms and methods which have been used for the same include neural networks, as...

متن کامل

A Flexible Link Radar Control Based on Type-2 Fuzzy Systems

An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...

متن کامل

A Fall Detection System based on the Type II Fuzzy Logic and Multi-Objective PSO Algorithm

The Elderly health is an important and noticeable issue; since these people are priceless resources of experience in the society. Elderly adults are more likely to be severely injured or to die following falls. Hence, fast detection of such incidents may even lead to saving the life of the injured person. Several techniques have been proposed lately for the fall detection of people, mostly cate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012